
17 Augmenting Data Structures

Some solutions require no more than a <textbook= data structure4such as a doubly
linked list, a hash table, or a binary search tree4but many others require a dash
of creativity. Rarely will you need to create an entirely new type of data structure,
though. More often, you can augment a textbook data structure by storing addi-
tional information in it. You can then program new operations for the data structure
to support your application. Augmenting a data structure is not always straightfor-
ward, however, since the added information must be updated and maintained by
the ordinary operations on the data structure.
This chapter discusses two data structures based on red-black trees that are aug-

mented with additional information. Section 17.1 describes a data structure that
supports general order-statistic operations on a dynamic set: quickly ûnding the
i th smallest number or the rank of a given element. Section 17.2 abstracts the pro-
cess of augmenting a data structure and provides a theorem that you can use when
augmenting red-black trees. Section 17.3 uses this theorem to help design a data
structure for maintaining a dynamic set of intervals, such as time intervals. You
can use this data structure to quickly ûnd an interval that overlaps a given query
interval.

17.1 Dynamic order statistics

Chapter 9 introduced the notion of an order statistic. Speciûcally, the i th order
statistic of a set of n elements, where i 2 f1; 2; : : : ; ng, is simply the element in
the set with the i th smallest key. In Chapter 9, you saw how to determine any order
statistic in O.n/ time from an unordered set. This section shows how to modify
red-black trees so that you can determine any order statistic for a dynamic set in
O.lg n/ time and also compute the rank of an element4its position in the linear
order of the set4in O.lg n/ time.

17.1 Dynamic order statistics 481

1
3
7 12
10

14
16

14

2 1 1

2 4

7

20
19 21

21
17

28
35 39

38
47 30

41
26

1

2 1

4

12

1

1 1

3

5 1

7

20

key
size

Figure 17.1 An order-statistic tree, which is an augmented red-black tree. In addition to its usual
attributes, each node x has an attribute x: size, which is the number of nodes, other than the sentinel,
in the subtree rooted at x.

Figure 17.1 shows a data structure that can support fast order-statistic operations.
An order-statistic tree T is simply a red-black tree with additional information
stored in each node. Each node x contains the usual red-black tree attributes x: key,
x: color, x: p, x: left, and x: right , along with a new attribute, x: size. This attribute
contains the number of internal nodes in the subtree rooted at x (including x itself,
but not including any sentinels), that is, the size of the subtree. If we deûne the
sentinel’s size to be 04that is, we set T: nil: size to be 04then we have the identity

x: size D x: left: size C x: right: size C 1 :

Keys need not be distinct in an order-statistic tree. For example, the tree in Fig-
ure 17.1 has two keys with value 14 and two keys with value 21. When equal keys
are present, the above notion of rank is not well deûned. We remove this ambiguity
for an order-statistic tree by deûning the rank of an element as the position at which
it would be printed in an inorder walk of the tree. In Figure 17.1, for example, the
key 14 stored in a black node has rank 5, and the key 14 stored in a red node has
rank 6.

Retrieving the element with a given rank

Before we show how to maintain the size information during insertion and dele-
tion, let’s see how to implement two order-statistic queries that use this additional
information. We begin with an operation that retrieves the element with a given
rank. The procedure OS-SELECT .x; i/ on the following page returns a pointer to
the node containing the i th smallest key in the subtree rooted at x . To ûnd the node
with the i th smallest key in an order-statistic tree T , call OS-SELECT .T: root ; i /.
Here is how OS-SELECT works. Line 1 computes r , the rank of node x within

the subtree rooted at x . The value of x: left: size is the number of nodes that come

482 Chapter 17 Augmenting Data Structures

OS-SELECT .x; i/
1 r D x: left: size C 1 // rank of x within the subtree rooted at x
2 if i == r
3 return x
4 elseif i < r
5 return OS-SELECT .x: left; i /
6 else return OS-SELECT .x: right; i r/

before x in an inorder tree walk of the subtree rooted at x . Thus, x: left: size C 1
is the rank of x within the subtree rooted at x . If i D r , then node x is the i th
smallest element, and so line 3 returns x . If i < r , then the i th smallest element
resides in x ’s left subtree, and therefore, line 5 recurses on x: left. If i > r , then
the i th smallest element resides in x ’s right subtree. Since the subtree rooted at x
contains r elements that come before x ’s right subtree in an inorder tree walk, the
i th smallest element in the subtree rooted at x is the .i r/th smallest element in
the subtree rooted at x: right. Line 6 determines this element recursively.
As an example of how OS-SELECT operates, consider a search for the 17th

smallest element in the order-statistic tree of Figure 17.1. The search starts with x
as the root, whose key is 26, and with i D 17. Since the size of 26’s left subtree
is 12, its rank is 13. Thus, the node with rank 17 is the 17 13 D 4th smallest
element in 26’s right subtree. In the recursive call, x is the node with key 41, and
i D 4. Since the size of 41’s left subtree is 5, its rank within its subtree is 6.
Therefore, the node with rank 4 is the 4th smallest element in 41’s left subtree. In
the recursive call, x is the node with key 30, and its rank within its subtree is 2.
The procedure recurses once again to ûnd the 4 2 D 2nd smallest element in the
subtree rooted at the node with key 38. Its left subtree has size 1, which means it
is the second smallest element. Thus, the procedure returns a pointer to the node
with key 38.
Because each recursive call goes down one level in the order-statistic tree, the

total time for OS-SELECT is at worst proportional to the height of the tree. Since
the tree is a red-black tree, its height is O.lg n/, where n is the number of nodes.
Thus, the running time of OS-SELECT is O.lg n/ for a dynamic set of n elements.

Determining the rank of an element
Given a pointer to a node x in an order-statistic tree T , the procedure OS-RANK
on the facing page returns the position of x in the linear order determined by an
inorder tree walk of T .

17.1 Dynamic order statistics 483

OS-RANK.T; x/
1 r D x: left: size C 1 // rank of x within the subtree rooted at x
2 y D x // root of subtree being examined
3 while y ¤ T: root
4 if y == y: p: right // if root of a right subtree . . .
5 r D r C y: p: left: size C 1 // . . . add in parent and its left subtree
6 y D y: p // move y toward the root
7 return r

The OS-RANK procedure works as follows. You can think of node x ’s rank
as the number of nodes preceding x in an inorder tree walk, plus 1 for x itself.
OS-RANK maintains the following loop invariant:

At the start of each iteration of the while loop of lines 336, r is the rank
of x: key in the subtree rooted at node y .

We use this loop invariant to show that OS-RANK works correctly as follows:
Initialization: Prior to the ûrst iteration, line 1 sets r to be the rank of x: key

within the subtree rooted at x . Setting y D x in line 2 makes the invariant true
the ûrst time the test in line 3 executes.

Maintenance: At the end of each iteration of the while loop, line 6 sets y D y: p.
Thus, we must show that if r is the rank of x: key in the subtree rooted at y at the
start of the loop body, then r is the rank of x: key in the subtree rooted at y: p
at the end of the loop body. In each iteration of the while loop, consider the
subtree rooted at y: p. The value of r already includes the number of nodes
in the subtree rooted at node y that precede x in an inorder walk, and so the
procedure must add the nodes in the subtree rooted at y ’s sibling that precede x
in an inorder walk, plus 1 for y: p if it, too, precedes x . If y is a left child, then
neither y: p nor any node in y: p’s right subtree precedes x , and so OS-RANK
leaves r alone. Otherwise, y is a right child and all the nodes in y: p’s left
subtree precede x , as does y: p itself. In this case, line 5 adds y: p: left: size C 1
to the current value of r .

Termination: Because each iteration of the loop moves y toward the root and the
loop terminates when y D T: root , the loop eventually terminates. Moreover,
the subtree rooted at y is the entire tree. Thus, the value of r is the rank of
x: key in the entire tree.
As an example, when OS-RANK runs on the order-statistic tree of Figure 17.1

to ûnd the rank of the node with key 38, the following sequence of values of y: key
and r occurs at the top of the while loop:

484 Chapter 17 Augmenting Data Structures

iteration y: key r
1 38 2
2 30 4
3 41 4
4 26 17

The procedure returns the rank 17.
Since each iteration of the while loop takes O.1/ time, and y goes up one level in

the tree with each iteration, the running time of OS-RANK is at worst proportional
to the height of the tree: O.lg n/ on an n-node order-statistic tree.

Maintaining subtree sizes
Given the size attribute in each node, OS-SELECT and OS-RANK can quickly
compute order-statistic information. But if the basic modifying operations on red-
black trees cannot efûciently maintain the size attribute, our work will have been
for naught. Let’s see how to maintain subtree sizes for both insertion and deletion
without affecting the asymptotic running time of either operation.
Recall from Section 13.3 that insertion into a red-black tree consists of two

phases. The ûrst phase goes down the tree from the root, inserting the new node
as a child of an existing node. The second phase goes up the tree, changing colors
and performing rotations to maintain the red-black properties.
To maintain the subtree sizes in the ûrst phase, simply increment x: size for each

node x on the simple path traversed from the root down toward the leaves. The
new node added gets a size of 1. Since there are O.lg n/ nodes on the traversed
path, the additional cost of maintaining the size attributes is O.lg n/.

In the second phase, the only structural changes to the underlying red-black tree
are caused by rotations, of which there are at most two. Moreover, a rotation is
a local operation: only two nodes have their size attributes invalidated. The link
around which the rotation is performed is incident on these two nodes. Referring
to the code for LEFT-ROTATE .T; x/ on page 336, add the following lines:

13 y: size D x: size
14 x: size D x: left: size C x: right : size C 1

Figure 17.2 illustrates how the attributes are updated. The change to RIGHT-
ROTATE is symmetric.
Since inserting into a red-black tree requires at most two rotations, updating the

size attributes in the second phase costs only O.1/ additional time. Thus, the total
time for insertion into an n-node order-statistic tree is O.lg n/, which is asymptot-
ically the same as for an ordinary red-black tree.

17.1 Dynamic order statistics 485

LEFT-ROTATE(T, x)

RIGHT-ROTATE(T, y)

93
19 y

42
11 x

6 4

7

93

42
19

12
6

4 7

x
y

Figure 17.2 Updating subtree sizes during rotations. The updates are local, requiring only the size
information stored in x, y, and the roots of the subtrees shown as triangles.

Deletion from a red-black tree also consists of two phases: the ûrst operates
on the underlying search tree, and the second causes at most three rotations and
otherwise performs no structural changes. (See Section 13.4.) The ûrst phase
removes one node ´ from the tree and could move at most two other nodes within
the tree (nodes y and x in Figure 12.4 on page 323). To update the subtree sizes,
simply traverse a simple path from the lowest node that moves (starting from its
original position within the tree) up to the root, decrementing the size attribute
of each node on the path. Since this path has length O.lg n/ in an n-node red-
black tree, the additional time spent maintaining size attributes in the ûrst phase
is O.lg n/. For the O.1/ rotations in the second phase of deletion, handle them
in the same manner as for insertion. Thus, both insertion and deletion, including
maintaining the size attributes, take O.lg n/ time for an n-node order-statistic tree.

Exercises
17.1-1
Show how OS-SELECT .T: root ; 10/ operates on the red-black tree T shown in
Figure 17.1.
17.1-2
Show how OS-RANK.T; x/ operates on the red-black tree T shown in Figure 17.1
and the node x with x: key D 35.
17.1-3
Write a nonrecursive version of OS-SELECT.
17.1-4
Write a procedure OS-KEY-RANK.T; k/ that takes an order-statistic tree T and a
key k and returns the rank of k in the dynamic set represented by T . Assume that
the keys of T are distinct.

486 Chapter 17 Augmenting Data Structures

17.1-5
Given an element x in an n-node order-statistic tree and a natural number i , show
how to determine the i th successor of x in the linear order of the tree in O.lg n/
time.
17.1-6
The procedures OS-SELECT and OS-RANK use the size attribute of a node only
to compute a rank. Suppose that you store in each node its rank in the subtree
of which it is the root instead of the size attribute. Show how to maintain this
information during insertion and deletion. (Remember that these two operations
can cause rotations.)
17.1-7
Show how to use an order-statistic tree to count the number of inversions (see
Problem 2-4 on page 47) in an array of n distinct elements in O.n lg n/ time.

? 17.1-8
Consider n chords on a circle, each deûned by its endpoints. Describe an O.n lg n/-
time algorithm to determine the number of pairs of chords that intersect inside the
circle. (For example, if the n chords are all diameters that meet at the center, then
the answer is ã n

2

ä .) Assume that no two chords share an endpoint.

17.2 How to augment a data structure

The process of augmenting a basic data structure to support additional functionality
occurs quite frequently in algorithm design. We’ll use it again in the next section to
design a data structure that supports operations on intervals. This section examines
the steps involved in such augmentation. It includes a useful theorem that allows
you to augment red-black trees easily in many cases.

You can break the process of augmenting a data structure into four steps:
1. Choose an underlying data structure.
2. Determine additional information to maintain in the underlying data structure.
3. Verify that you can maintain the additional information for the basic modifying

operations on the underlying data structure.
4. Develop new operations.
As with any prescriptive design method, you’ll rarely be able to follow the steps
precisely in the order given. Most design work contains an element of trial and
error, and progress on all steps usually proceeds in parallel. There is no point,

17.2 How to augment a data structure 487

for example, in determining additional information and developing new operations
(steps 2 and 4) if you cannot maintain the additional information efûciently. Never-
theless, this four-step method provides a good focus for your efforts in augmenting
a data structure, and it is also a good framework for documenting an augmented
data structure.
We followed these four steps in Section 17.1 to design order-statistic trees. For

step 1, we chose red-black trees as the underlying data structure. Red-black trees
seemed like a good starting point because they efûciently support other dynamic-
set operations on a total order, such as M INIMUM, MAXIMUM, SUCCESSOR, and
PREDECESSOR.

In Step 2, we added the size attribute, so that each node x stores the size of the
subtree rooted at x . Generally, the additional information makes operations more
efûcient. For example, it is possible to implement OS-SELECT and OS-RANK
using just the keys stored in the tree, but then they would not run in O.lg n/ time.
Sometimes, the additional information is pointer information rather than data, as
in Exercise 17.2-1.
For step 3, we ensured that insertion and deletion can maintain the size attributes

while still running in O.lg n/ time. Ideally, you would like to update only a few
elements of the data structure in order to maintain the additional information. For
example, if each node simply stores its rank in the tree, the OS-SELECT and
OS-RANK procedures run quickly, but inserting a new minimum element might
cause a change to this information in every node of the tree. Because we chose to
store subtree sizes instead, inserting a new element causes information to change
in only O.lg n/ nodes.
In Step 4, we developed the operations OS-SELECT and OS-RANK. After all,

the need for new operations is why anyone bothers to augment a data structure in
the ûrst place. Occasionally, rather than developing new operations, you can use
the additional information to expedite existing ones, as in Exercise 17.2-1.

Augmenting red-black trees
When red-black trees underlie an augmented data structure, we can prove that in-
sertion and deletion can always efûciently maintain certain kinds of additional in-
formation, thereby simplifying step 3. The proof of the following theorem is sim-
ilar to the argument from Section 17.1 that we can maintain the size attribute for
order-statistic trees.

Theorem 17.1 (Augmenting a red-black tree)
Let f be an attribute that augments a red-black tree T of n nodes, and suppose that
the value of f for each node x depends only the information in nodes x , x: left, and
x: right (possibly including x: left: f and x: right : f), and that the value of x: f can

488 Chapter 17 Augmenting Data Structures

be computed from this information in O.1/ time. Then, the insertion and deletion
operations can maintain the values of f in all nodes of T without asymptotically
affecting the O.lg n/ running times of these operations.

Proof The main idea of the proof is that a change to an f attribute in a node x
propagates only to ancestors of x in the tree. That is, changing x: f may require
x: p: f to be updated, but nothing else; updating x: p: f may require x: p: p: f to be
updated, but nothing else; and so on up the tree. After updating T: root : f , no other
node depends on the new value, and so the process terminates. Since the height of
a red-black tree is O.lg n/, changing an f attribute in a node costs O.lg n/ time in
updating all nodes that depend on the change.
As we saw in Section 13.3, insertion of a node x into red-black tree T consists

of two phases. If the tree T is empty, then the ûrst phase simply makes x be the
root of T . If T is not empty, then the ûrst phase inserts x as a child of an existing
node. Because we assume that the value of x: f depends only on information in
the other attributes of x itself and the information in x ’s children, and because x ’s
children are both the sentinel T: nil, it takes only O.1/ time to compute the value
of x: f . Having computed x: f , the change propagates up the tree. Thus, the total
time for the ûrst phase of insertion is O.lg n/. During the second phase, the only
structural changes to the tree come from rotations. Since only two nodes change in
a rotation, but a change to an attribute might need to propagate up to the root, the
total time for updating the f attributes is O.lg n/ per rotation. Since the number
of rotations during insertion is at most two, the total time for insertion is O.lg n/.
Like insertion, deletion has two phases, as Section 13.4 discusses. In the ûrst

phase, changes to the tree occur when a node is deleted, and at most two other
nodes could move within the tree. Propagating the updates to f caused by these
changes costs at most O.lg n/, since the changes modify the tree locally along a
simple path from the lowest changed node to the root. Fixing up the red-black tree
during the second phase requires at most three rotations, and each rotation requires
at most O.lg n/ time to propagate the updates to f . Thus, like insertion, the total
time for deletion is O.lg n/.

In many cases, such as maintaining the size attributes in order-statistic trees, the
cost of updating after a rotation is O.1/, rather than the O.lg n/ derived in the proof
of Theorem 17.1. Exercise 17.2-3 gives an example.
On the other hand, when an update after a rotation requires a traversal all the way

up to the root, it is important that insertion into and deletion from a red-black tree
require a constant number of rotations. The chapter notes for Chapter 13 list other
schemes for balancing search trees that do not bound the number of rotations per
insertion or deletion by a constant. If each operation might require ‚.lg n/ rota-

17.3 Interval trees 489

tions and each rotation traverses a path up to the root, then a single operation could
require ‚.lg 2 n/ time, rather than the O.lg n/ time bound given by Theorem 17.1.

Exercises
17.2-1
Show, by adding pointers to the nodes, how to support each of the dynamic-set
queries MINIMUM, MAXIMUM, SUCCESSOR, and PREDECESSOR in O.1/ worst-
case time on an augmented order-statistic tree. The asymptotic performance of
other operations on order-statistic trees should not be affected.
17.2-2
Can you maintain the black-heights of nodes in a red-black tree as attributes in the
nodes of the tree without affecting the asymptotic performance of any of the red-
black tree operations? Show how, or argue why not. How about maintaining the
depths of nodes?
17.2-3
Let ̋ be an associative binary operator, and let a be an attribute maintained in each
node of a red-black tree. Suppose that you want to include in each node x an addi-
tional attribute f such that x: f D x 1 : a ̋ x 2 : a ̋ ˝ x m : a, where x 1 ; x 2 ; : : : ; x m
is the inorder listing of nodes in the subtree rooted at x . Show how to update the f
attributes in O.1/ time after a rotation. Modify your argument slightly to apply it
to the size attributes in order-statistic trees.

17.3 Interval trees

This section shows how to augment red-black trees to support operations on dy-
namic sets of intervals. In this section, we’ll assume that intervals are closed. Ex-
tending the results to open and half-open intervals is conceptually straightforward.
(See page 1157 for deûnitions of closed, open, and half-open intervals.)

Intervals are convenient for representing events that each occupy a continuous
period of time. For example, you could query a database of time intervals to ûnd
out which events occurred during a given interval. The data structure in this section
provides an efûcient means for maintaining such an interval database.

A simple way to represent an interval Œt 1 ; t 2 � is as an object i with attributes
i: low D t 1 (the low endpoint) and i: high D t 2 (the high endpoint). We say that in-
tervals i and i 0 overlap if i \ i 0 ¤ ;, that is, if i: low හ i 0 : high and i 0 : low හ i: high.

490 Chapter 17 Augmenting Data Structures

i i i i

(a)

i

(b)

i

(c)

iʹ iʹ iʹ iʹ

iʹ iʹ

Figure 17.3 The interval trichotomy for two closed intervals i and i 0 . (a) If i and i 0 overlap, there
are four situations, and in each, i: low හ i 0 : high and i 0 : low හ i: high. (b) The intervals do not
overlap, and i: high < i 0 : low. (c) The intervals do not overlap, and i 0 : high < i: low.

As Figure 17.3 shows, any two intervals i and i 0 satisfy the interval trichotomy,
that is, exactly one of the following three properties holds:
a. i and i 0 overlap,
b. i is to the left of i 0 (i.e., i: high < i 0 : low),
c. i is to the right of i 0 (i.e., i 0 : high < i: low).

An interval tree is a red-black tree that maintains a dynamic set of elements, with
each element x containing an interval x: int. Interval trees support the following
operations:
I NTERVAL-I NSERT .T; x/ adds the element x , whose int attribute is assumed to

contain an interval, to the interval tree T .
I NTERVAL-DELETE .T; x/ removes the element x from the interval tree T .
I NTERVAL-SEARCH .T; i/ returns a pointer to an element x in the interval tree T

such that x: int overlaps interval i , or a pointer to the sentinel T: nil if no such
element belongs to the set.

Figure 17.4 shows how an interval tree represents a set of intervals. The four-
step method from Section 17.2 will guide our design of an interval tree and the
operations that run on it.

Step 1: Underlying data structure
A red-black tree serves as the underlying data structure. Each node x contains an
interval x: int. The key of x is the low endpoint, x: int: low, of the interval. Thus,
an inorder tree walk of the data structure lists the intervals in sorted order by low
endpoint.

17.3 Interval trees 491

0 5 10 15 20 25 30

0
5
6

8
15
16
17

19
25
26 26

30
20

19
21

23
9
10

8
3

(a)

[0,3]
3

[6,10]
10

[5,8]
10

[8,9]
23

[15,23]
23

[16,21]
30

[17,19]
20

[26,26]
26

[19,20]
20

(b)
[25,30]
30

int
max

Figure 17.4 An interval tree. (a) A set of 10 intervals, shown sorted bottom to top by left endpo int.
(b) The interval tree that represents them. Each node x contains an interval, shown above the dashed
line, and the maximum value of any interval endpoint in the subtree rooted at x, shown below the
dashed line. An inorder tree walk of the tree lists the nodes in sorted order by left endpoint.

Step 2: Additional information

In addition to the intervals themselves, each node x contains a value x: max, which
is the maximum value of any interval endpoint stored in the subtree rooted at x .

Step 3: Maintaining the information

We must verify that insertion and deletion take O.lg n/ time on an interval tree of n
nodes. It is simple enough to determine x: max in O.1/ time, given interval x: int
and the max values of node x ’s children:
x: max D max fx: int: high; x: left : max; x: right : maxg :

492 Chapter 17 Augmenting Data Structures

Thus, by Theorem 17.1, insertion and deletion run in O.lg n/ time. In fact, you can
use either Exercise 17.2-3 or 17.3-1 to show how to update all the max attributes
that change after a rotation in just O.1/ time.

Step 4: Developing new operations
The only new operation is I NTERVAL-SEARCH .T; i/, which ûnds a node in tree T
whose interval overlaps interval i . If there is no interval in the tree that overlaps i ,
the procedure returns a pointer to the sentinel T: nil.

I NTERVAL-SEARCH .T; i/
1 x D T: root
2 while x ¤ T: nil and i does not overlap x: int
3 if x: left ¤ T: nil and x: left: max i: low
4 x D x: left // overlap in left subtree or no overlap in right subtree
5 else x D x: right // no overlap in left subtree
6 return x

The search for an interval that overlaps i starts at the root of the tree and proceeds
downward. It terminates when either it ûnds an overlapping interval or it reaches
the sentinel T: nil. Since each iteration of the basic loop takes O.1/ time, and
since the height of an n-node red-black tree is O.lg n/, the I NTERVAL-SEARCH
procedure takes O.lg n/ time.

Before we see why I NTERVAL-SEARCH is correct, let’s examine how it works
on the interval tree in Figure 17.4. Let’s look for an interval that overlaps the
interval i D Œ22; 25�. Begin with x as the root, which contains Œ16; 21� and does
not overlap i . Since x: left: max D 23 is greater than i: low D 22, the loop continues
with x as the left child of the root4the node containing Œ8; 9�, which also does not
overlap i . This time, x: left: max D 10 is less than i: low D 22, and so the loop
continues with the right child of x as the new x . Because the interval Œ15; 23�
stored in this node overlaps i , the procedure returns this node.
Now let’s try an unsuccessful search, for an interval that overlaps i D Œ11; 14�

in the interval tree of Figure 17.4. Again, begin with x as the root. Since the
root’s interval Œ16; 21� does not overlap i , and since x: left: max D 23 is greater
than i: low D 11, go left to the node containing Œ8; 9�. Interval Œ8; 9� does not over-
lap i , and x: left: max D 10 is less than i: low D 11, and so the search goes right.
(No interval in the left subtree overlaps i .) Interval Œ15; 23� does not overlap i ,
and its left child is T: nil, so again the search goes right, the loop terminates, and
I NTERVAL-SEARCH returns the sentinel T: nil.

17.3 Interval trees 493

To see why I NTERVAL-SEARCH is correct, we must understand why it sufûces
to examine a single path from the root. The basic idea is that at any node x ,
if x: int does not overlap i , the search always proceeds in a safe direction: the
search will deûnitely ûnd an overlapping interval if the tree contains one. The
following theorem states this property more precisely.

Theorem 17.2
Any execution of I NTERVAL-SEARCH .T; i/ either returns a node whose interval
overlaps i , or it returns T: nil and the tree T contains no node whose interval over-
laps i .

Proof The while loop of lines 235 terminates when either x D T: nil or i overlaps
x: int. In the latter case, it is certainly correct to return x . Therefore, we focus on
the former case, in which the while loop terminates because x D T: nil, which is
the node that I NTERVAL-SEARCH returns.
We’ll prove that if the procedure returns T: nil, then it did not miss any intervals

in T that overlap i . The idea is to show that whether the search goes left in line 4 or
right in line 5, it always heads toward a node containing an interval overlapping i ,
if any such interval exists. In particular, we’ll prove that
1. If the search goes left in line 4, then the left subtree of node x contains an inter-

val that overlaps i or the right subtree of x contains no interval that overlaps i .
Therefore, even if x ’s left subtree contains no interval that overlaps i but the
search goes left, it does not make a mistake, because x ’s right subtree does not
contain an interval overlapping i , either.

2. If the search goes right in line 5, then the left subtree of x contains no interval
that overlaps i . Thus, if the search goes right, it does not make a mistake.
For both cases, we rely on the interval trichotomy. Let’s start with the case

where the search goes right, whose proof is simpler. By the tests in line 3, we
know that x: left D T: nil or x: left: max < i: low. If x: left D T: nil, then x ’s left
subtree contains no interval that overlaps i , since it contains no intervals at all. Now
suppose that x: left ¤ T: nil, so that we must have x: left: max < i: low. Consider
any interval i 0 in x ’s left subtree. Because x: left : max is the maximum endpoint in
x ’s left subtree, we have i 0 : high හ x: left: max. Thus, as Figure 17.5(a) shows,
i 0 : high හ x: left: max

< i: low :
By the interval trichotomy, therefore, intervals i and i 0 do not overlap, and so x ’s
left subtree contains no interval that overlaps i .

Now we examine the case in which the search goes left. If the left subtree of
node x contains an interval that overlaps i , we’re done, so let’s assume that no node

494 Chapter 17 Augmenting Data Structures

i

(a) (b)

iʹ
iʹ i iʹ

iʹʹ
iʹʹ

iʹʹ

Figure 17.5 Intervals in the proof of Theorem 17.2. The value of x: left: max is shown in each case
as a dashed line. (a) The search goes right. No interval i 0 in x’s left subtree can overlap i . (b) The
search goes left. The left subtree of x contains an interval that overlaps i (situation not shown),
or x’s left subtree contains an interval i 0 such that i 0 : high D x: left: max. Since i does not overlap i 0 ,
neither does it overlap any interval i 00 in x’s right subtree, since i 0 : low හ i 00 : low.

in x ’s left subtree overlaps i . We need to show that in this case, no node in x ’s right
subtree overlaps i , so that going left will not miss any overlaps in x ’s right subtree.
By the tests in line 3, the left subtree of x is not empty and x: left: max i: low. By
the deûnition of the max attribute, x ’s left subtree contains some interval i 0 such
that
i 0 : high D x: left: max

 i: low ;
as illustrated in Figure 17.5(b). Since i 0 is in x ’s left subtree, it does not overlap i ,
and since i 0 : high i: low, the interval trichotomy tells us that i: high < i 0 : low.
Now we bring in the property that interval trees are keyed on the low endpoints
of intervals. Because i 0 is in x ’s left subtree, we have i 0 : low හ x: int: low. Now
consider any interval i 00 in x ’s right subtree, so that x: int: low හ i 00 : low. Putting
inequalities together, we get
i: high < i 0 : low

හ x: int: low
හ i 00 : low :

Because i: high < i 00 : low, the interval trichotomy tells us that i and i 00 do not
overlap. Since we chose i 00 as any interval in x ’s right subtree, no node in x ’s right
subtree overlaps i .

Thus, the I NTERVAL-SEARCH procedure works correctly.

17.3 Interval trees 495

Exercises
17.3-1
Write pseudocode for LEFT-ROTATE that operates on nodes in an interval tree and
updates all the max attributes that change in O.1/ time.
17.3-2
Describe an efûcient algorithm that, given an interval i , returns an interval over-
lapping i that has the minimum low endpoint, or T: nil if no such interval exists.
17.3-3
Given an interval tree T and an interval i , describe how to list all intervals in T
that overlap i in O.min fn; k lg ng/ time, where k is the number of intervals in the
output list. (Hint: One simple method makes several queries, modifying the tree
between queries. A slightly more complicated method does not modify the tree.)
17.3-4
Suggest modiûcations to the interval-tree procedures to support the new opera-
tion I NTERVAL-SEARCH-E XACTLY .T; i/, where T is an interval tree and i is
an interval. The operation should return a pointer to a node x in T such that
x: int: low D i: low and x: int: high D i: high, or T: nil if T contains no such node.
All operations, including I NTERVAL-SEARCH-EXACTLY, should run in O.lg n/
time on an n-node interval tree.
17.3-5
Show how to maintain a dynamic set Q of numbers that supports the operation
MIN-GAP, which gives the absolute value of the difference of the two closest num-
bers in Q. For example, if we have Q D f1; 5; 9; 15; 18; 22g , then MIN-GAP.Q/
returns 3, since 15 and 18 are the two closest numbers in Q. Make the operations
I NSERT, DELETE, SEARCH, and MIN-GAP as efûcient as possible, and analyze
their running times.

? 17.3-6
VLSI databases commonly represent an integrated circuit as a list of rectan-
gles. Assume that each rectangle is rectilinearly oriented (sides parallel to the
x - and y -axes), so that each rectangle is represented by four values: its minimum
and maximum x - and y -coordinates. Give an O.n lg n/-time algorithm to decide
whether a set of n rectangles so represented contains two rectangles that overlap.
Your algorithm need not report all intersecting pairs, but it must report that an over-
lap exists if one rectangle entirely covers another, even if the boundary lines do not
intersect. (Hint: Move a <sweep= line across the set of rectangles.)

496 Chapter 17 Augmenting Data Structures

Problems

17-1 Point of maximum overlap
You wish to keep track of a point of maximum overlap in a set of intervals4a
point with the largest number of intervals in the set that overlap it.
a. Show that there is always a point of maximum overlap that is an endpoint of

one of the intervals.

b. Design a data structure that efûciently supports the operations I NTERVAL-
I NSERT, I NTERVAL-DELETE, and FIND-POM, which returns a point of max-
imum overlap. (Hint: Keep a red-black tree of all the endpoints. Associate
a value of C1 with each left endpoint, and associate a value of 1 with each
right endpoint. Augment each node of the tree with some extra information to
maintain the point of maximum overlap.)

17-2 Josephus permutation
We deûne the Josephus problem as follows. A group of n people form a circle,
and we are given a positive integer m හ n. Beginning with a designated ûrst
person, proceed around the circle, removing every mth person. After each person is
removed, counting continues around the circle that remains. This process continues
until nobody remains in the circle. The order in which the people are removed from
the circle deûnes the .n; m/-Josephus permutation of the integers 1; 2; : : : ; n. For
example, the .7; 3/-Josephus permutation is h3; 6; 2; 7; 5; 1; 4i.
a. Suppose that m is a constant. Describe an O.n/-time algorithm that, given an

integer n, outputs the .n;m/-Josephus permutation.

b. Suppose that m is not necessarily a constant. Describe an O.n lg n/-time algo-
rithm that, given integers n and m, outputs the .n;m/-Josephus permutation.

Chapter notes

In their book, Preparata and Shamos [364] describe several of the interval trees
that appear in the literature, citing work by H. Edelsbrunner (1980) and E. M.
McCreight (1981). The book details an interval tree that, gi ven a static database
of n intervals, allows us to enumerate all k intervals that overlap a given query
interval in O.k C lg n/ time.

